

UNIVERSITY OF AMSTERDAM

https://www.amsterdamsciencepark.nl/

Visualizing Spore Germination Protein Complexes in Action in Bacterial Endospores; Lessons and Challenges Ahead

Swammerdam Institute for Life Sciences - SILS - University of Amsterdam

Molecular Biology and Microbial Food Safety

Stanley Brul head of laboratory with the input from many PhD students and PETER SETLOW UConn Health

Bacterial spores; the good are inhabitants of our intestines!

David Goulding⁴ & Trevor D. Lawley¹

See also the Holomicrobiome Initiative

https://holomicrobioom.nl/en/home-en/

A Holland-based public-private partnership that aims to map, analyze and model the many contacts between microbiota in Water, Soil-Plant, Animals and Humans

and the Research Priority Area Personal Microbiome Health https://pmh-uva.nl/

Full professor in Microbiome Engineering vacancy open @ SILS-UvA

Main interest in *Bacillus subtilis* and *Bacillus cereus* as a toxigenic spore former that causes food borne disease upon spore germination and outgrowth.

the life cycle of spore-forming bacteria

Inner membrane with GRs

Germinant Receptor proteins (GRs) were initially visualized @ super-resolution in B. subtilis

JOVE Journal of Visualized Experiments

www.jove.com

Video Article Visualization of Germinosomes and the Inner Membrane in *Bacillus subtilis* Spores

Juan Wen¹, Raymond Pasman¹, Erik M.M. Manders*^{2,3}, Peter Setlow*⁴, Stanley Brul*¹

¹Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam

²Van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam ³Confocal.nl BV.

⁴Dept. of Molecular Biology and Biophysics, UConn Health

*These authors contributed equally

www.nature.com/scientificreports

SCIENTIFIC REPORTS

natureresearch

OPEN A live-cell super-resolution technique demonstrated by imaging germinosomes in wild-type bacterial spores

R. M. P. Breedijk^{1,6}, J. Wen^{2,6}, V. Krishnaswami^{1,6}, T. Bernas³, E. M. M. Manders^{1,4}, P. Setlow⁵, N. O. E. Vischer² & S. Brul^{2*}

A germinant receptor protein cluster (germinosome) as shown by annular rescan confocal microscopy of GerKB-sGFP.

Key germination proteins are clustered in germinosomes in *Bacillus subtilis* spores

*GR germinants are generally **amino acids**, sugars or purine nucleosides

Juan Wen's PhD thesis UvA 2020; Setlow group J Bacteriol. 2015; Mol Biol. 2014.

₩

B. cereus spores have seven different germinant receptors; we focussed on the viualization of the alanine binding tricistronic receptor GerR.

Germinant receptors

GerR	<u>A/C/B</u> subunit
GerK	A/B/C subunit
Gerl	A / B / C subunit
GerS	A / B / C subunit
GerQ	A / B / C subunit
GerG	?/B/C subunit
GerL	?/B/C subunit

[can sense L-alanine as a trigger of germination]

Schematic diagram of the topology of germinant receptor subunits in the inner membrane of Bacillus spores

Germination scaffold protein: GerD

Compared to GerD of *B. subtilis*: 43% identity in sequence of amino acid

Research questions (I)

Visualization of germination proteins in putative *Bacillus cereus* germinosomes

Analysis of the interaction of germinant receptor proteins of the gerR operon and GerD in *Bacillus cereus* spores using FRET

How to visualize GRs and SpoVAEa proteins in *B. cereus* spores ?

fuse FP to target gene

Arantes O and Lereclus D. 1991; Y Wang, et al. Int J Mol Sci. 2021, 22(20).

Research questions (I)

Visualization of germination proteins in putative *Bacillus cereus* germinosomes

Analysis of interaction of germination protein GerR and GerD in *Bacillus cereus* spores using FRET

Visualization of SGFP2 protein expression from *pHT315* in *B. cereus* spores

Recombinant spores express fusion protein GerRB-SGFP2 encoded from *pHT315* in *B. cereus* spores

lane 1, wild-type spores;
lane 2, spores carrying pHT315;
lane 3, spores carrying pHT315-PgerR-gerRB-SGFP2;
lane 4, spores carrying pHT315-gerRB-SGFP2;
Lane M, prestained protein ladder

N

First time visualization of germination proteins in *B. cereus*

These data of visualization suggested that co-expression of GR subunits improves their stability and are the first evidence for the existence of germinosomes in spores of the pathogen *B. cereus*.

Percentage of germinosomes in B. cereus spores with GerRB-SGFP2 or GerD-mScarlet-I

expression of only GerRB-SGFP2 (*B. cereus* 003):
 one germinosome was observed

co-expression of GerRA and GerRC (*B. cereus* 006):
 one and two germinosomes were observed

expression of GerD-mScarlet-I (*B. cereus* 007):
 one, two and three germinosomes were observed

CONCLUSIONS

- High resolution wide-field fluorescence microscopy visualized GerRB-SGFP2 specific bright foci (germinosomes) in ~30% of individual dormant spores if only GerRB-SGFP2 was expressed,
- but in ~85% of spores upon co-expression with GerRA and GerRC. Our data corroborates the notion that co-expression of GR subunits improves their stability.
- All spores displayed bright fluorescent foci upon expression of GerD-mScarlet-i under the control of the *gerD* promoter.

Published: Wang Y, de Boer R, Vischer N, van Haastrecht P, Setlow P, Brul S. Visualization of Germination Proteins in Putative *Bacillus cereus* Germinosomes. Int J Mol Sci. 2020 Jul 22;21(15):5198. doi: 10.3390/ijms21155198.

Research questions (I)

Visualization of germination proteins in putative *Bacillus cereus* germinosomes

Analysis of interaction of germination protein GerR and GerD in *Bacillus cereus* spore putative germinosomes using FRET.

<u>Fluorescence</u> <u>Resonance</u> <u>Energy</u> <u>Transfer</u> (FRET) analysis principles

Jablonski diagram illustrating the FRET process. Note that the black dashed line indicates a virtual photon.

University of Amsterdam

B. cereus forespore membrane stained with FM 4-64 indeed harbours GerRB and GerD

a. FM-4-64 stains the spore membrane during the sporulating process.

- b. The germination receptor gerRB and GerD are present in the forespore membrane.
- c. SASP are, in contrast, as expected localized in the core of forespore.

^{2 Br⁻} the chemical structure of FM 4-64

Protein-protein interactions in the inner spore membrane visualized through FRET

Definition

Channels	Excitation	Emission	
Donor channel (DD)	Donor	Donor	_
FRET channel (DA)	Donor	Acceptor	
Acceptor channel (AA)	Acceptor	Acceptor	

AA

Quantification of the FRET results of interaction between GerR and GerD

Conclusions:

- There is a close interaction (< 10 nm distance) between GerRB and the GerD protein in *B. cereus* germinosomes.
- The germinant receptor proteins from the GerR operon and GerD were localized in germinosomes in the innermembrane of forespores using reporter proteins and FM 4-64 staining.

Published: Wang Y, Breedijk RMP, Hink MA, Bults L, Vischer NOE, Setlow P and Brul S. Dynamics of germinosome formation and FRET-based analysis of interactions between GerD and germinant receptor subunits in *Bacillus cereus* spores. Int J Mol Sci. 2021 Oct 18;22(20):11230. doi: 10.3390/ijms222011230.

The major Bacillus spore germination proteins and their location in the inner membrane

Germinant receptors

🗆 GerR	A/C/B subunit
🗆 GerK	A/B/C subunit
🗆 Gerl	A / B / C subunit
GerS	A / B / C subunit
🗆 GerQ	A / B / C subunit
🗆 GerG	?/B/C subunit
🗆 GerL	?/B/C subunit

Germination scaffold protein: GerD

SpoVA (stage V sporulation protein A)

A / B / C / D / Eb / **Ea** / F subunit

the inside core of the spore

Ca-DPA, Ca²⁺ and dipicolinic acid

Research questions (II)

Visualization of SpoVAEa protein dynamics in dormant *B. subtilis* & *B. cereus* spores

Dynamic changes in the germinosome and SpoVAEa during germination of *B. cereus* spores

High frequency time-lapse images acquisition and analysis in B. subtilis and B. cereus

Super-resolution imaging of high frequency movement of SpoVAEa in *B. subtilis* spores

The RCM high frequency time lapse images (22.2 ms/frame) of the SpoVAEa-SGFP2 fusion protein of

genomic expression in *B. subtilis* dormant spore.

RCM= Rescan Confocal Microscopy

Published: Wen J,Vischer NOE, de Vos AL, Manders EMM, Setlow P and Brul S. Organization and dynamics of the SpoVAEa protein and its surrounding inner membrane lipids, upon germination of *Bacillus subtilis* spores. Scientific Reports(2022) 12:4944 doi.org/10.1038/s41598-022-09147-3

Comparing the mobility of SpoVAEa foci in dormant spore of *B. cereus* and *B. subtilis*

Summary:

- In *B. cereus* (panel A,B) and *B. subtilis* (panel B) the SpoVAEa foci of different spores behave differently.
- SpoVAEa fluorecent foci of *B. subtilis* spores^{*}
 redistribute at a higher frequency than those of *B. cereus*.
- This difference may be due to the fact that we look at different species with a different protein complement and at genomic expression in *B. subtilis* versus overexpression from a plasmid in *B. cereus*.

Co-localization shown between SpoVAEa and germinosome GerD?

SpoVAEa-SGFP2 &GerD-mScarlet-I

GerD-mScarlet-I

Dynamics of germinant receptor foci FRET and fluorescence upon germination triggering by L-alanine

Germinosome FRET foci GerRB-SGFP2 GerD-mScarlett in B. cereus spores

- were lost earlier than loss of SGFP2 foci and mScarlet-I foci,
- -were lost to a large extent upon the phase transition,
- -but the fluorescent germinosome foci as such persist well beyond the phase transition.

Dynamics of SpoVAEa and GerD proteins upon germination triggered by L-alanine in *B. cereus* spores

SpoVAEa-SGFP2 foci were lost upon phase transition.

GerD-mScarlet-I foci spread out and continued to exist beyond phase transition.

A model for the sequence of events during L-alanine induced spore germination in *Bacillus cereus*.

Published: Wang Y, Vischer NOE, Wekking D, Bogian A, Setlow P and Brul S. Visualization of SpoVAEa protein dynamics in doemant spores of *Bacillus cereus* and dynamic changes in their germinosomes and SpoVAEa during germination. (2022) Microbiology Spectrum 10 (3) <u>doi.org/10.1128/spectrum.00666-22</u>

Back to our model *Bacillus subtilis:*

MDPI

Article Predicting the Structure and Dynamics of Membrane Protein GerAB from *Bacillus subtilis*

Sophie Blinker¹, Jocelyne Vreede^{2,*}, Peter Setlow³ and Stanley Brul^{1,*}

Molecular modelling of the B-subunits' structure & experimental mutant analysis

ARTICLE

Check for updates

https://doi.org/10.1038/s41467-021-27235-2 OPEN

Dormant spores sense amino acids through the B subunits of their germination receptors

Lior Artzi¹, Assaf Alon[®]², Kelly P. Brock³, Anna G. Green³, Amy Tam³, Fernando H. Ramírez-Guadiana[®]¹, Debora Marks³, Andrew Kruse[®]² & David Z. Rudner[®]^{1⊠}

Current PhD student Longjiao Chen

Steered Molecular Dynamics shows a putative water channel

Take home messages and challenges ahead

- First evidence of the existence of germinosomes in spores of the pathogen
 B. cereus.
- II. GerD mainly interacts with GerR B subunit and not with A or C- subunits.
- III. Dynamics data showed that SpoVAEa moves on the surface of the inner membrane and it might play a role in signal transduction between the germinosome, possibly through GerD, and the SpoVA channel.
- IV. There are challenges ahead for bacterial spore germination analysis;
 - exact composition of each germinosome,
 - do GerAB subunits in *B. subtilis contain a water channel->* Longjiao Chen
 - is such a putative channel conserved in other Bacilli and Clostridia,
 - how is the structure of gerAB, gerRB influenced by L-alanine binding, etc.

Acknowledgements

Molecular Biology and Microbial Food Safety, UvA

Prof. Stanley Brul

Dr. Juan Wen, Dr. Yan Wang, Dr. Longjiao Chen

Molecular Biology and Biophysics, UConn Health

Prof. Peter Setlow

Molecular Dynamics @ FNWI UvA

Dr. Jocelyne Vreede

LCAM-FNWI

Dr. ir. Mark Hink

Ing. Ronald Breedijk

Funded by

Collaborate with us!

NWO, UvA Research Priority area Systems Biology, Personal Microbiome Health, Urban Mental Health, NWA-ORC, CSC-fellowships, UvA-tenure track funds

Thank you for your attention.

Towards the understanding of the structure and function of germination receptor protein GerAB by combining computational and *in vivo* analyses.

Longjiao Chen¹, Jocelyne Vreede², Peter Setlow³, Stanley Brul^{*1}

¹ Molecular Biology and Microbial Food Safety Group, Swammerdam Institute for Life Sciences, University of Amsterdam, the Netherlands.

² Computational Chemistry Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, the Netherlands.

³ Molecular Biology and Biophysics, UCONN Health, USA.

* s.brul@uva.nl

Keywords: germination, germinant receptor, water channel, Bacillus subtilis, molecular dynamics.

Abstract (<300 words):

Some species in the *Bacillales* and *Clostridiales* bacterial orders form spores in unfavorable environments. These spores are metabolically dormant, resistant to harsh conditions, and their core, analogous to growing cells' protoplast, has a water content between 25-45% of wet wt compared to the ~80% in vegetative cells. However, upon germination by a variety of germinants, spores take up water relatively rapidly, restoring their water content to that of growing cells.¹ With no known functional water channels in the model spore-forming organism *Bacillus subtilis*, the molecular mechanism of spore water uptake during germination is unknown. Recent work showed that a subunit of the prototypical *Bacillus subtilis* spore germinant receptor GerA, the integral inner membrane protein GerAB, is the sensor initiating spore germination in response to L-alanine.² Notably previous work found that GerAB contains what appears to be a water channel.³ Using Molecular Dynamic (MD) simulation methodology, we found water passing through the GerAB protein *in silico*, indicating the proteins putative water channel and therefore calculate the free energy of water permeation. These computational methods, as well as the predicted GerAB structure, have provided us with indications of GerAB residues that may be crucial in the water channel's function, and thus suggest mutagenesis experiments to experimentally test *in vivo* the computational modelling predictions. Here we present both the *in silico* and *in vivo* data that reinforce each other and thus jointly help to elucidate the function of GerAB as a water channel.

References

1. Christie, G. & Setlow, P. Bacillus spore germination: Knowns, unknowns and what we need to learn. Cell Signal 74, 109729 (2020). 2. Artzi, L. et al. Dormant spores sense amino acids through the B subunits of their germination receptors. Nat Commun 12, 6842 (2021).

3. Blinker, S., Vreede, J., Setlow, P. & Brul, S. Predicting the structure and dynamics of membrane protein GerAB from *Bacillus subtilis*. Int J Mol Sci 22, 3793 (2021).

Validation that spores of all transformants carry the plasmid

- 1. Spores from 24 independent colonies isolated and lysed
- 2. PCR run on lysate to identify plasmid DNA, and to give an ~ 2.6 kb fragment
- 3. PCR products run on gel electrophoresis and stained

Spores from all colonies have the plasmid